Copyright Rational Software 2001 http://www.therationaledge.com/content/jan_01/f_rup_pk.html

-ses

e e-zinae for the raticnal E-'Ell'l"ll"l'lul"lit}l'
s Rationally Speaking Technical Franklin's Kite
» What Isthe Rational Unified Process?

Features Management

b subscribe

b contact us

by Philippe Kruchten
Rational Fellow) submit an article
Rational Software Canada

b rational.com
What exactly is the Rational Unified Process, orFR& many call it now? |

can give several answers to this question, fronfedént perspectives: ,
b issue contents

. What isthe purpose of the
RUP? It is a software
engineering process, aimed at
guiding software development
organizations in their
endeavors.

) archives
b mission statement

b editorial staff

. How isthe RUP designed
and delivered? It is a process
product, designed like any
software product, and
integrated with the Rational
suites of software development
tools.

. What is the structure of the
RUP; how is it organized
internally? The RUP has a very well-defined and regular sturet,
using an object-oriented approach for its descriti

. How would an organization proceed to adopt the RUP? The
RUP is a process framework that allows a softwaevdlopment
organization to tailor or extend the RUP to m atdl specific needs.

. What will I find in the RUP? It captures many of modern
software development's best practices harvestedbyional over
the years, in a form suitable for a wide range abjcts and
organizations.

The RUP Is a Software Engineering Process

Many organizations have slowly become aware of jnetv important a
well-defined and well-documented software developmh@rocess is to the
success of their software projects. The developmeftthe CMM
(Capability Maturity Model) by the Software Enginegreg Institute (SEI)

has become a beacon, a standard to which many dzgéians look, when
they aim at attaining level 2, 3, or higher. Ovéretyears, these
organizations have collected their knowledge andred it with their
developers. This collective know-how often growstaf design methods,
published textbooks, training programs, and smahlvhto notes amassed
internally over several projects. Unfortunately, pmactice, these internally
developed processes often end up gathering dustida binders on a
developer's shelf -- rarely updated, rapidly becogiobsolete, and almost
never followed. Other software development organizas have no
process at all, and need a starting point, anahipirocess to jump-start
them on the path of faster development of bettealgy software
products.

The RUP can help both kinds of organizations, bpwyiding them with a
mature, rigorous, and flexible software engineerprgpcess.

The RUP Is a Process Product

The RUP is not just a book, a development methodedeped and
published once and for all in paper form. "Softwgreocesses are
software, too," wrote Lee Osterweil, Professor @inCputer Science at the
University of Massachusetts. In contrast with thestly binder approach,
the Rational Unified Process is designed, developeaalivered, and
maintained like any software tool. The Rational fid Process shares
many characteristics with software products:

. Like a software product, the Rational Unified Preseis designed
and documented using the Unified Modeling LanguggdiL). An
underlying object model, the Unified Software PreseModel
(USPM) provides a very coherent backbone to thecess.

. It is delivered online using Web technology, nothomoks or binders,
so it's literally at the developers' fingertips.

. Regular software upgrades are released by RatiGodtiiware
approximately twice a year. So the process is nevesolete, and
its users benefit from the latest development.tAldam members
access the same version of the process.

. Because it is modular and in electronic form, itnche tailored and
configured to suit the specific needs of a develggm organization,
something that's hard to do with a book or a binder

. Itis integrated with the many software developmeaotls in the
Rational Suites, so developers can access procegbkagce within
the tool they are using.

Figure 1 shows a page from the RUP.

R ational Unified Process

| B Edt Mew Fawedes Took Help |

B Cone Wiorkdlows
B4 Warkers and Activities
&0 Analysts
B Developers

Plan Test

Design Tast

mplement Test
Evaluate Tast

Develop Test Suidelines

FIF T [Seorcn] Geling Stated Feedtock
- implementing the Rational Lnded
EHC) Phases

The Test Designer is the principal role in testing. This worker
iz responsible for the planning, design, implementation, and
evaluation of test, ineluding:

B Seneration of the test plan and test model

B Implementation of the test procedures
B Evaluation of test coverage, results, and efectiveness

o> > > [

g
;

B &-Hﬁndggr\, FlanTazt Dazign Text Implement Test Evaluste Tast
&0 Additional Warkers D i >
&) Artifacts I
Cwvelep -

E-%, Tool Mentors
EHF Termplates

B[] Whita Papars
B Work Guldelines

i Wb Resource Canter
A} about the Unified Process

Test Guidelines

T Dudighir
-~
Test \ \
Guddalnes Fespangibbe o0
T

=

E \ m Charge
Rt
Test Plan H g
a‘ Tast Model g Test Sonphs
4 ¥ TefiCarm
_I_I —I Wk o ad Madal Tei
(Pedarmancs Testing Onk) Frocedures ﬂ
|] 7

Figure 1: A Page from the RUP
(View full size graphicin new window)

The Architecture of the RUP

The process itself has been designed using techaggaimilar to those for
software design. In particular, it has an undergyiobject-oriented model,
using UML. Figure 2 shows the overall architecturethe Rational Unified

Process. The process has two structures or, if goafer, two dimensions:

. The horizontal dimension represents time and shohws lifecycle
aspects of the process as it unfolds.

. The vertical dimension represents core processighees (or
workflows), which logically group software engineeg activities by
their nature.

The first (horizontal) dimension represents tgnamic aspecbf the
process expressed in terms of cycles, phases, tieera, and milestones.
In the RUP, a software product is designed andthbinila succession of
incremental iterations. This allows testing andigation of design ideas,
as well as risk mitigation, to occur earlier in thifecycle. The second
(vertical) dimension represents tls¢atic aspectof the process described
in terms of process components: activities, disinip$, artifacts, and roles.

Phases
Workflows | | Inception Elaboration Construction Transition

Business Modeling

Reguirements ‘. s et
Analysis & Design w*—‘
i — I
Implementation e = i \‘N-:r—--m__
Test E —— e, e et
Deployment : ; == N

Configuration
& Change Mgmt

Project Management
Environment | .o

’i
{

Tran

Initial Flab #1 | | Eab #2|| Const || Const | Const b

#1 | #2 | en
Iterations

*3

Figure 2 - Two Dimensions of the RUP

The RUP Is a Process Framework

The Rational Unified Process is alsopaocess frameworkhat can be
adapted and extended to suit the needs of an adgpdrganization. It is
generaland comprehensive enough to be used "44.¢s, out-of-the-

box, by many small-to-medium software developmenganizations,
especially those that do not have a very strongcpss culture. But the
adopting organization can also modify, adjust, aaxpand the Rational
Unified Process to accommodate the specific needhgracteristics,
constraints, and history of its organization, cuty and domain. A process
should not be followed blindly, generating uselegsrk and producing
artifacts that are of little added value. Instedlde process must be made
as lean as possible while still fulfilling its mi®s to help developers rapidly
produce predictably high-quality software. The bestactices of the
adopting organization, along with its specific raland procedures, should
complement the process.

The process elements that are likely to be modifiedstomized, added, or
suppressed include artifacts, activities, workeasd workflows as well as
guidelines and artifact templates. The Rationalfléni Process itself
contains the roles, activities, artifacts, guidelsn and examples necessary
for its modification and configuration by the adapd organization.
Moreover, these activities are also supported bg Rational Process
Workbench™ (RPW) tool. This new tool uses a UML nedadf the Rational
Unified Process to support process design and aunlgoactivities, and the
production of company-specific or project-speciRUP variants, called

development cases

Starting in 2000, the RUP contains sevevaliants, or pre-packaged
development cases for different types of softwaevélopment
organizations.

The RUP Captures Software Development Best
Practices

The Rational Unified Process captures many of maodsoftware
development'sbest practicesn a form suitable for a wide range of
projects and organizations:

. Develop software iteratively.

. Manage requirements.

. Use component-based architectures.
. Visually model software.

. Continuously verify software quality.

. Control changes to software.

1. Develop Software Iteratively

Most software teams still use waterfallprocess for development projects,
completing in strict sequence the phases of reqgueat analysis, design,
implementation/integration, and test. This ine#int approach idles key
team members for extended periods and defers tgsuimtil the end of the
project lifecycle, when problems tend to be tougihdaexpensive to
resolve, and pose a serious threat to release deagll By contrast, RUP
represents an iterative approach that is supemoraf number of reasons:

. It lets you take into account changing requiremenifBe truth is
that requirements usually change. Requirements geaand
"requirements creep"” -- the addition of requiremenhat are
unnecessary and/or not customer-driven as a propgogresses --
have always been primary sources of project troultdading to late
delivery, missed schedules, dissatisfied customeansd frustrated
developers.

. Integration is not one "big bang" at the end; in®de elements are
integrated progressively -- almost continuously.tfWRUP, what
used to be a lengthy time of uncertainty and pairtaking up to
40% of the total effort at the end of a projectis-broken down into
six to nine smaller integrations involving fewereedents.

. Risks are usually discovered or addressed durirtggmation. With
the iterative approach, you can mitigate risks earlAs you unroll
the early iterations, you test all process compotserexercising
many aspects of the project, such as tools, off-thelf software,
people skills, and so on. You can quickly see whetperceived
risks prove to be real and also uncover new, un®uws@d risks

when they are easier and less costly to address.

. lterative development provides management with aam® of
making tactical changes to the product -- to comg®tith existing
products, for example. It allows you to releaser@guct early with
reduced functionality to counter a move by a comifogt or to
adopt another vendor for a given technology.

. lteration facilitates reuse; it is easier to idemtcommon parts as
they are partially designed or implemented tharmrécognize them
during planning. Design reviews in early iteratioalow architects
to spot potential opportunities for reuse, and thdavelop and
mature common code for these opportunities in suwjusent
iterations.

. When you can correct errors over several iteratjothe result is a
more robust architecture. As the product moves beyinception
into elaboration, flaws are detected even in eatdyations rather
than during a massive testing phase at the endfoPmm@ance
bottlenecks are discovered at a time when they stlhbe
addressed, instead of creating panic on the evdediVery.

. Developers can learn along the way, and their vasi@abilities and
specialties are more fully employed during the eatlifecycle.
Testers start testing early, technical writers bewiiting early, and
so on. In a non-iterative development, the samegeaovould be
waiting around to begin their work, making plan erftplan but not
making any concrete progress. What can a testetr wden the
product consists of only three feet of design doaumation on a
shelf? In addition, training needs, or the need dalditional people,
are spotted early, during assessment reviews.

. The development process itself can be improved aafthed along
the way. The assessment at the end of an iteratiohonly looks at
the status of the project from a product or schedpérspective,
but also analyzes what should be changed in theanization and in
the process to make it perform better in the ndgration.

Project managers often resist the iterative apphgaseeing it as a kind of
endless and uncontrolled hacking. In the Rationaifigd Process, the
iterative approach is very controlled; the numbduration, and objectives
of iterations are carefully planned, and the tasksd responsibilities of
participants are well defined. In addition, objes®@imeasures of progress
are captured. Some reworking takes place from deeation to the next,
but this, too, is carefully controlled.

2. Manage Requirements
Requirements management is a systematic approadilitibing,
organizing, communicating, and managing the chaggiaquirements of a

software-intensive system or application.

The benefits of effective requirements managemenet aumerous:

. Better control of complex projects. This includesecgter

understanding of the intended system behavior ai as
prevention of requirements creep.

. Improved software quality and customer satisfactidhe
fundamental measure of quality is whether a systeéoes what it is
supposed to do. With the Rational Unified Procedss can be more
easily assessed because all stakeholders have anoom
understanding of what must be built and tested.

. Reduced project costs and delays. Fixing errorseiqguirements is
very expensive. With effective requirements manager you can
decrease these errors early in the developmentrethg cutting
project costs and preventing delays.

. Improved team communication. Requirements managetmen
faciltates the involvement of users early in theopess, helping to
ensure that the application meets their needs. \Wainaged
requirements build a common understanding of thej@ct needs
and commitments among the stakeholders: users,omnsets,
management, designers, and testers.

It is often difficult to look at a traditional obpg-oriented system model
and tell how the system does what it is supposeddo This difficulty
stems from the lack of a consistent, visible threthdough the system
when it performs certain tasks. In the Rationalfigrd Processuse cases
provide that thread by defining the behavior penfieed by a system.

Use cases are not required in object orientatioor, are they a
compulsory vehicle in the Rational Unified Proced8here they are
appropriate, however, they provide an importanklinetween system
requirements and other development artifacts, sashdesign and tests.
Other object-oriented methods provide use-case-t&presentation but
use different names for it, such as scenarios oe&us.

The Rational Unified Process is a use-case-drivepr@ach, which means
that the use cases defined for the system can sasvehe foundation for
the rest of the development process. Use cases tdsredapturing
requirements play a major role in several of thegass workflows,
especially design, test, user-interface design, @ndject management.
They are also critical to business modeling.

3. Use Component-Based Architecture

Use cases drive the Rational Unified Process thioawg the entire
lifecycle, but design activities center on architee -- either system
architecture or, for software-intensive systemsftware architecture. The
main focus of early iterations is to produce andidate a software
architecture. In the initial development cycle,dhibkes the form of an
executable architectural prototype that gradualMples, through
subsequent iterations, into the final system.

The Rational Unified Process provides a methodisglstematic way to
design, develop, and validate an architecture.ffers templates for
describing an architecture based on the concephuotftiple architectural
views. It provides for the capture of architectusdyle, design rules, and

constraints. The design process component contapescific activities
aimed at identifying architectural constraints aarthitecturally significant
elements, as well as guidelines on how to make #@eclural choices. The
management process shows how planning the earhaiiens takes into
account the design of an architecture and the netsm of major technical
risks.

A componentcan be defined as a nontrivial piece of softwaaemodule,
package, or subsystem that fulfills a clear funaotidhhas a clear boundary,
and can be integrated into a well-defined architget It is the physical
realization of an abstraction in your design. Commpot-based
development can proceed in several ways:

. In defining a modular architecture, you identifgoiate, design,
develop, and test well-formed components. These gonents can
be individually tested and gradually integratedfoom the whole
system.

. Furthermore, some of these components can be deedldo be
reusable, especially components that provide sohdito a wide
range of common problems. Reusable components ppedlly
larger than mere collections of utilities or cladsraries. They form
the basis of reuse within an organization, increxgsoverall
software productivity and quality.

. More recently, the advent of commercially succedsifrastructures
supporting the concept of software components -elsas Common
Object Request Broker Architecture (CORBA), the dntet, Active X,
and JavaBeans -- has launched a whole industryffefhe-shelf
components for various domains, allowing developeashuy and
integrate components rather than develop them ingen

The first point above exploits the old conceptsnobédularity and
encapsulation, bringing the concepts underlyingeadtjoriented
technology a step further. The final two points fslsioftware development
from programming software (one line at a time) t@enctposing software
(by assembling components).

The Rational Unified Process supports componentdadhdevelopment in
several ways.

. The iterative approach allows developers to progiesly identify
components and decide which ones to develop, wloigks to
reuse, and which ones to buy.

. The focus on software architecture allows you toicarlate the
structure. The architecture enumerates the composnamd the
ways they integrate, as well as the fundamental headsms and
patterns by which they interact.

. Concepts such as packages, subsystems, and layerssed during
analysis and design to organize components and i§pmterfaces.

. Testing is organized around single components faat then is
gradually expanded to include larger sets of intetgrd components.

4. Visually Model Software

Models are simplifications of reality; they help e understand and shape
both a problem and its solution, and to comprehdarge, complex
systems that we could not otherwise understand adale. Alarge part
of the Rational Unified Process is about developamgd maintaining models
of the system under development.

The Unified Modeling Language (UML) is a graphidahguage for
visualizing, specifying, constructing, and docummmgtthe artifacts of a
software-intensive system. It gives you a standarédans of writing the
system's blueprints, covering conceptual items sashbusiness processes
and system functions, as well as concrete itemshsag classes written in
a specific programming language, database schemad,reusable
software components. While it provides the vocalbyylao express various
models, the UML does not tell you how to developitsxare. That is why
Rational developed the Rational Unified Procesguade to the effective
use of the UML for modeling. It describes the mogsigbu need, why you
need them, and how to construct them. RUP2000 udMis version 1.4.

5. Continuously Verify Quality

Often people ask why there is no worker in chardgeqoality in the

Rational Unified Process. The answer is that qyaikt not added to a
product by a few people. Instead, quality is thespensibility of every
member of the development organization. In softwaevelopment, our
concern about quality is focused on two areas: mratdquality and process
quality.

. Product quality -- The quality of the principal product being
produced (the software or system) and all the elabseit
comprises (for example, components, subsystemshitecture,
and so on).

. Process quality -- The degree to which an acceptable process
(including measurements and criteria for qualityasvimplemented
and adhered to during the manufacturing of the protd

Additionally, process quality is concerned with tigeality of the
artifacts (such as iteration plans, test plans,-case realizations,
design model, and so on) produced in support of pmi@cipal
product.

6. Control Changes to Software

Particularly in an iterative development, many wgrkoducts are often
modified. By allowing flexibility in the planning md execution of the
development and by allowing the requirements to leepiterative
development emphasizes the vital issues of keepmagk of changes and
ensuring that everything and everyone is in synecdsed closely on the
needs of the development organization, change mamagnt is a
systematic approach to managing changes in requénets, design, and
implementation. It also covers the important adies of keeping track of
defects, misunderstandings, and project commitmeadsvell as

associating these activities with specific artifac@nd releases. Change
management is tied to configuration management arehsurements.

Who Is Using the Rational Unified Process?

More than a thousand companies were using the Rati?nified Process
at the end of 2000. They use it in various applicatdomains, for both
large and small projects. This shows the versatiéind wide applicability
of the Rational Unified Process. Here are exampéshe various industry
sectors around the world that use it:

. Telecommunications

. Transportation, aerospace, defense
. Manufacturing

. Financial services

. Systems integrators

More than 50% of these users are either using théidRal Unified Process
for e-business or planning to do so in the neawufet This is a sign of
change in our industry: as the time-to-market pneresincreases, as well
as the demand for quality, companies are lookindeatrning from others'
experience, and are ready to adopt proven besttpoax. The way these
organizations use the Rational Unified Process alaoies greatly: some
use it very formally; they have evolved their owaoncpany process from
the Rational Unified Process, which they follow twigreat care. Other
organizations have a more informal usage, taking Bational Unified
Process as a repository of advice, templates, amdance that they use
as they go along -- as a sort of "electronic coaoh"software engineering.
By working with these customers, observing how these the RUP,
listening to their feedback, looking at the addit®othey make to the
process to address specific concerns, the RUP dgweéent team at
Rational continues to refine the process for thenbgt of all.

To Learn More

. Rational Unified Process 20Q(Rational Software, Cupertino, CA
(2000) http://www.rational.com/rup/

. Philippe Kruchten,The Rational Unified Process -- An Introduction
2nd ed., Addison-Wesley-Longman, Reading, MA (2000)

. Grady Boochet al,, UML Users' Guide, Addison-Wesley-Longman,
Reading, MA (2000)

. lvar Jacobson et alThe Unified Software Development Process
Addison-Wesley-Longman, Reading, MA (1999).

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.

Thank you!

Copyright Rational Software 2001 | Privacy/ Legal Information

